Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Systematic elucidation of the traditional Chinese medicine prescription Danxiong particles via network pharmacology and molecular docking

Ning Li1, Keixin Liu2, Mai Yu2, Mingjuan Liu2, Shani Li2, Wei Cai2, Aiping Tian1

1National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; 2School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 41800, China.

For correspondence:-  Aiping Tian   Email: aipingtian@126.com

Accepted: 27 April 2022        Published: 31 May 2022

Citation: Li N, Liu K, Yu M, Liu M, Li S, Cai W, et al. Systematic elucidation of the traditional Chinese medicine prescription Danxiong particles via network pharmacology and molecular docking. Trop J Pharm Res 2022; 21(5):981-987 doi: 10.4314/tjpr.v21i5.11

© 2022 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To investigate the pharmacological effect of the traditional Chinese medicine (TCM) prescription Danxiong particles (TDX105) and its mechanism of action.
Methods: The active compound and targets of TDX105 were investigated via network pharmacology. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were enriched, and protein-protein interaction network (PPI) was constructed. A network of ‘components-targets-pathways’ was developed with Cytoscape 3.8.0 software, while the formation of molecular docking analysis was conducted using Autodock vina software.
Results: There were 304 compounds and 482 targets identified in total. Genes with degree ≥ mean node values were selected as the crucial targets, and string database was to be combined to 64 targets identified with cytoscape so as to draw a protein interaction map. A total of 137 pathways were enriched from 64 targets involving mainly 10 pathways, for example, PI3K-Akt signaling pathway, pathways in cancer, human cytomegalovirus infection and focal adhesion. Then, compound-target and compound-target-pathways were constructed using cytoscape (3.8.0). Finally, the five most active compounds, viz, quercetin, myricetin, luteolin, ellagic acid and kaempferol, and the top ten targets AKT1, GAPDH, TP53, ALB, EGFR, MAPK3, JUN, MAPK1, SRC and ESR1 were selected for molecular docking. These targets and compounds had strong interactions through a combination of hydrogen bonds and hydrophobic forces.
Conclusion: The mechanism of action of TDX105 has been successfully explained using the combination of network pharmacology and molecular docking. This may offer a solid foundation to the clinical use of TDX105, and further strengthen the prospects of its development for clinical use.

Keywords: Danxiong particles, Traditional Chinese medicine, Network Pharmacology, Molecular docking

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates